Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Electron. j. biotechnol ; 18(1): 16-19, Jan. 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-736980

ABSTRACT

Background Streptomyces sp. DPUA 1576 from Amazon lichens was studied to protease and fibrinolytic production. A 2² factorial experimental design was applied to optimize its protease enzyme production using two independent variables, namely soybean flour and glucose concentrations. Results The optimal conditions to obtain high protease production (83.42 U/mL) were 1.26% soybean flour and 1.23% glucose concentration. A polynomial model was fitted to correlate the relationship between the two variables and protease activity. In relation to fibrinolytic activity, the highest activity of 706.5 mm² was obtained at 1.7% soybean flour and 1.0% glucose concentration, which was 33% higher than plasmin. Fibrinolytic production was not optimized in the studied conditions. Conclusions These results show that the optimization of the culture medium can enhance protease production, thus becoming a good process for further research. In addition, Streptomyces sp. DPUA 1576, isolated from Amazon lichens, might be a potential strain for fibrinolytic protease production.


Subject(s)
Peptide Hydrolases/biosynthesis , Streptomyces/enzymology , Fibrinolytic Agents/metabolism , Glycine max , Models, Statistical , Actinobacteria , Flour , Glucose/analysis , Lichens
2.
Braz. j. microbiol ; 45(3): 919-928, July-Sept. 2014. graf, tab
Article in English | LILACS | ID: lil-727021

ABSTRACT

The selection of new microorganisms able to produce antimicrobial compounds is hoped for to reduce their production costs and the side effects caused by synthetic drugs. Clavulanic acid is a β-lactam antibiotic produced by submerged culture, which is widely used in medicine as a powerful inhibitor of β-lactamases, enzymes produced by bacteria resistant to antibiotics such penicillin and cephalosporin. The purpose of this work was to select the best clavulanic acid producer among strains of Streptomyces belonging to the Microorganism Collection of the Department of Antibiotics of the Federal University of Pernambuco (DAUFPE). Initially, the strains were studied for their capacity to inhibit the action of β-lactamases produced by Klebsiella aerogenes ATCC 15380. From these results, five strains were selected to investigate the batch kinetics of growth and clavulanic acid production in submerged culture carried out in flasks. The results were compared with the ones obtained by Streptomyces clavuligerus ATCC 27064 selected as a control strain. The best clavulanic acid producer was Streptomyces DAUFPE 3060, molecularly identified as Streptomyces variabilis, which increased the clavulanic acid production by 28% compared to the control strain. This work contributes to the enlargement of knowledge on new Streptomyces wild strains able to produce clavulanic acid by submerged culture.


Subject(s)
Clavulanic Acid/metabolism , Enzyme Inhibitors/metabolism , Streptomyces/isolation & purification , Streptomyces/metabolism , Enterobacter aerogenes/enzymology , Mass Screening , Streptomyces/growth & development , beta-Lactamases/metabolism
3.
Braz. j. microbiol ; 42(2): 658-667, Apr.-June 2011. graf, tab
Article in English | LILACS | ID: lil-590012

ABSTRACT

Clavulanic acid is a β-lactam antibiotic which has a potent β-lactamase inhibiting activity. In order to optimize its production by the new isolate Streptomyces DAUFPE 3060, the influence of two independent variables, temperature and soybean flour concentration, on clavulanic acid and biomass concentrations was investigated in 250 mL-Erlenmeyers according to a 2² central composite design. To this purpose, temperature and soybean flour (SF) concentration were varied in the ranges 26-34°C and 10-50 g/L, respectively, and the results evaluated utilizing the Response Surface Methodology. The experimental maximum production of clavulanic acid (629 mg/L) was obtained at 32°C and 40 g/L SF after 48 h, while the maximum biomass concentration (3.9 g/L) at 30°C and 50 g/L soybean flour, respectively. These values are satisfactorily close to those (640 mg/L and 3.75 g/L, respectively) predicted by the model, thereby demonstrating the validity of the mathematical approach adopted in this study.

4.
Braz. j. microbiol ; 31(4): 286-290, oct.-dec. 2000. tab, graf
Article in English | LILACS | ID: lil-299826

ABSTRACT

The effect of different carbon sources on the pectinesterases, endo- and exo-polygalacturonase activities from Aspergillus japonicus 586 was evaluated in liquid media (Manachini solutions) supplemented with different substrate concentrations. The culture medium was inoculated with 5.106 spores/ml and mantained under agitation (140 rpm), at 30ºC, during 122 h. The enzyme evaluation was carried out 24 h after filtration. The crude extract from A. japonicus 586 indicated that the best enzymatic activities were afforded in the presence of 0.5 per cente pectin (pectinesterease), 0.2 per cente pectin and 0.2 per cente glycerol (endopolygalacturonase), and 0.5per cente pectin associated to 0.5 per cente glucose (exopolygalacturonase). Carbon sources concentration, isolated or associated, significantly affects the pectinesterase, and endo- and exopolygalacturonase activities. Pectin, glucose and saccharose, when added to the culture medium in high concentrations, exhibited a repression effect on all the analyzed enzymes.(au)


Subject(s)
Aspergillus , Carbon-Carbon Ligases , Enzymes , In Vitro Techniques , Polygalacturonase , Culture Media , Enzyme Activation
SELECTION OF CITATIONS
SEARCH DETAIL